Diameter, Decomposability, and Minkowski Sums of Polytopes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minkowski sums of convex lattice polytopes

submitted at the Oberwolfach Conference “Combinatorial Convexity and Algebraic Geometry” 26.10–01.11, 1997 Throughout, we fix the notation M := Z and MR := R . Given convex lattice polytopes P, P ′ ⊂ MR, we have (M ∩ P ) + (M ∩ P ) ⊂ M ∩ (P + P ), where P + P ′ is the Minkowski sum of P and P , while the left hand side means {m+m | m ∈ M ∩ P,m ∈ M ∩ P }. Problem 1 For convex lattice polytopes P...

متن کامل

On the Exact Maximum Complexity of Minkowski Sums of Polytopes

We present a tight bound on the exact maximum complexity of Minkowski sums of polytopes in R. In particular, we prove that the maximum number of facets of the Minkowski sum of k polytopes with m1,m2, . . . ,mk facets respectively is bounded from above by

متن کامل

Dynamically Maintaining the Exact Minkowski Sums of Rotating Polytopes∗

We present a novel algorithm for maintaining exact Minkowski sums of pairs of polytopes in R, while one of the polytopes rotates. The algorithm is based on pre-computing a so-called criticality map, which records the changes in the underlying graph-structure of the Minkowski sum. We give tight combinatorial bounds on the complexity of the criticality map when one of the polytopes rotates, aroun...

متن کامل

Decomposability of Polytopes

We reformulate a known characterization of decomposability of polytopes in a way which may be more computationally convenient, and offer a more transparent proof. We apply it to give new sufficient conditions for indecomposability of polytopes, and then illustrate them with some examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian Mathematical Bulletin

سال: 2018

ISSN: 0008-4395,1496-4287

DOI: 10.4153/s0008439518000668